Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Plant Pathol J ; 40(2): 151-159, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38606445

RESUMO

Bacterial soft rot caused by Pectobacterium carotovorum subsp. carotovorum (Pcc) is one of the most severe diseases in radish cultivation. To control this plant disease, the most effective method has been known to cultivate resistant cultivars. Previously, we developed an efficient bioassay method for investigating resistance levels with 21 resistant and moderately resistant cultivars of radish against a strain Pcc KACC 10421. In this study, our research expanded to investigate the resistance of radish cultivars against six Pcc strains, KACC 10225, KACC 10421, ATCC 12312, ATCC 15713, LY34, and ECC 301365. To this end, the virulence of the six Pcc strains was determined based on the development of bacterial soft rot in seedlings of four susceptible radish cultivars. The results showed that the Pcc strains exhibited different virulence in the susceptible cultivars. To explore the race differentiation of Pcc strains corresponding to the resistance in radish cultivars, we investigated the occurrence of bacterial soft rot caused by the six Pcc strains on the 21 resistant and moderate resistant cultivars. Our results showed that the average values of the area under the disease progress curve were positively correlated with the virulence of the strains and the number of resistant cultivars decreased as the virulence of Pcc strains increased. Taken together, our results suggest that the resistance to Pcc of the radish cultivars commercialized in Korea is more likely affected by the virulence of Pcc strains rather than by race differentiation of Pcc.

2.
ACS Appl Mater Interfaces ; 16(15): 18490-18502, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38573937

RESUMO

Evading recognition of immune cells is a well-known strategy of tumors used for their survival. One of the immune evasion mechanisms is the synthesis of kynurenine (KYN), a metabolite of tryptophan, which suppresses the effector T cells. Therefore, lowering the KYN concentration can be an efficient antitumor therapy by restoring the activity of immune cells. Recently, kynureninase (KYNase), which is an enzyme transforming KYN into anthranilate, was demonstrated to show the potential to decrease KYN concentration and inhibit tumor growth. However, due to the limited bioavailability and instability of proteins in vivo, it has been challenging to maintain the KYNase concentration sufficiently high in the tumor microenvironment (TME). Here, we developed a nanoparticle system loaded with KYNase, which formed a Biodegradable and Implantable Nanoparticle Depot named 'BIND' following subcutaneous injection. The BIND sustainably supplied KYNase around the TME while located around the tumor, until it eventually degraded and disappeared. As a result, the BIND system enhanced the proliferation and cytokine production of effector T cells in the TME, followed by tumor growth inhibition and increased mean survival. Finally, we showed that the BIND carrying KYNase significantly synergized with PD-1 blockade in three mouse models of colon cancer, breast cancer, and melanoma.


Assuntos
Hidrolases , Cinurenina , Melanoma , Camundongos , Animais , Cinurenina/metabolismo , Evasão Tumoral , Imunoterapia , Microambiente Tumoral
3.
J Chem Phys ; 160(6)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38341778

RESUMO

Molecular chirality is represented as broken mirror symmetry in the structural orientation of constituent atoms and plays a pivotal role at every scale of nature. Since the discovery of the chiroptic property of chiral molecules, the characterization of molecular chirality is important in the fields of biology, physics, and chemistry. Over the centuries, the field of optical chiral sensing was based on chiral light-matter interactions between chiral molecules and polarized light. Starting from simple optics-based sensing, the utilization of plasmonic materials that could control local chiral light-matter interactions by squeezing light into molecules successfully facilitated chiral sensing into noninvasive, ultrasensitive, and accurate detection. In this Review, the importance of plasmonic materials and their engineering in chiral sensing are discussed based on the principle of chiral light-matter interactions and the theory of optical chirality and chiral perturbation; thus, this Review can serve as a milestone for the proper design and utilization of plasmonic nanostructures for improved chiral sensing.

4.
Lab Chip ; 24(3): 505-516, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38165774

RESUMO

Biological models with genetic similarities to humans are used for exploratory research to develop behavioral screening tools and understand sensory-motor interactions. Their small, often mm-sized appearance raises challenges in the straightforward quantification of their subtle behavioral responses and calls for new, customisable research tools. 3D printing provides an attractive approach for the manufacture of custom designs at low cost; however, challenges remain in the integration of functional materials like porous membranes. Nanoporous membranes have been integrated with resin exchange using purpose-designed resins by digital light projection 3D printing to yield functionally integrated devices using a simple, economical and semi-automated process. Here, the impact of the layer thickness and layer number on the porous properties - parameters unique for 3D printing - are investigated, showing decreases in mean pore diameter and porosity with increasing layer height and layer number. From the same resin formulation, materials with average pore size between 200 and 600 nm and porosity between 45% and 61% were printed. Membrane-integrated devices were used to study the chemoattractant induced behavioural response of zebrafish embryos and planarians, both demonstrating a predominant behavioral response towards the chemoattractant, spending >85% of experiment time in the attractant side of the observation chamber. The presented 3D printing method can be used for printing custom designed membrane-integrated devices using affordable 3D printers and enable fine-tuning of porous properties through adjustment of layer height and number. This accessible approach is expected to be adopted for applications including behavioural studies, early-stage pre-clinical drug discovery and (environmental) toxicology.


Assuntos
Organismos Aquáticos , Peixe-Zebra , Humanos , Animais , Porosidade , Alicerces Teciduais , Impressão Tridimensional
5.
Genes Genomics ; 46(2): 253-261, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38236352

RESUMO

BACKGROUND: Interactions of plants with biotic stress factors including bacteria, fungi, and viruses have been extensively investigated to date. Plasmodiophora brassicae, a protist pathogen, causes clubroot disease in Cruciferae plants. Infection of Chinese cabbage (Brassica rapa) plants with P. brassica results in the formation of root galls, which inhibits the roots from absorbing soil nutrients and water. Sugar, the major source of carbon for all living organisms including pathogens and host plants, plays an important role in plant growth and development. OBJECTIVE: To explore the roles of BrSWEET2, BrSWEET13, and BrSWEET14 in P. brassicae resistance, Arabidopsis thaliana T-DNA knockout mutants sweet2, sweet13, and sweet14 were employed. METHODS: To isolate total RNA from the collected root nodules, the root tissues washed several times with running water and frozen tissues with liquid nitrogen. Total RNA was extracted using the Spectrum™ Plant Total RNA Kit (SIGMA) and cDNA was synthesized in a 20 µl reaction volume using the ReverTra Ace-α-® kit (TOYOBO). Real-time PCR was performed in a 10 µl reaction volume containing 1 µl of template DNA, 1 µl of forward primer, 1 µl of reverse primer, 5 µl of 2× iQTM SYBR® Green Supermix (BioRad), and 2 µl of sterile distilled water. The SWEET genes were genotyped using BioFACT™ 2× TaqBasic PCR Master Mix 2. RESULTS: Both sweet2 and sweet14 showed strong resistance to P. brassicae compared with wild-type Arabidopsis and Chinese cabbage plants and sweet13 mutant plants. Pathogenicity assays indicated that the SWEET2 gene plays an important role in clubroot disease resistance in higher plants.


Assuntos
Brassica rapa , Brassica , Plasmodioforídeos , Brassica rapa/genética , Plasmodioforídeos/genética , Brassica/genética , Água , RNA
6.
Biosensors (Basel) ; 13(11)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37998155

RESUMO

Nucleic acid amplification testing facilitates the detection of disease through specific genomic sequences and is attractive for point-of-need testing (PONT); in particular, the early detection of microorganisms can alert early response systems to protect the public and ecosystems from widespread outbreaks of biological threats, including infectious diseases. Prior to nucleic acid amplification and detection, extensive sample preparation techniques are required to free nucleic acids and extract them from the sample matrix. Sample preparation is critical to maximize the sensitivity and reliability of testing. As the enzymatic amplification reactions can be sensitive to inhibitors from the sample, as well as from chemicals used for lysis and extraction, avoiding inhibition is a significant challenge, particularly when minimising liquid handling steps is also desirable for the translation of the assay to a portable format for PONT. The reagents used in sample preparation for nucleic acid testing, covering lysis and NA extraction (binding, washing, and elution), are reviewed with a focus on their suitability for use in PONT.


Assuntos
Doenças Transmissíveis , Ácidos Nucleicos , Humanos , Reprodutibilidade dos Testes , Ecossistema , Técnicas de Amplificação de Ácido Nucleico/métodos , Doenças Transmissíveis/diagnóstico
7.
iScience ; 26(12): 108377, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38034356

RESUMO

Tumor suppressor p53 plays a pivotal role in suppressing cancer, so various drugs has been suggested to upregulate its function. However, drug resistance is still the biggest hurdle to be overcome. To address this, we developed a deep learning model called AnoDAN (anomalous gene detection using generative adversarial networks and graph neural networks for overcoming drug resistance) that unravels the hidden resistance mechanisms and identifies a combinatorial target to overcome the resistance. Our findings reveal that the TGF-ß signaling pathway, alongside the p53 signaling pathway, mediates the resistance, with THBS1 serving as a core regulatory target in both pathways. Experimental validation in lung cancer cells confirms the effects of THBS1 on responsiveness to a p53 reactivator. We further discovered the positive feedback loop between THBS1 and the TGF-ß pathway as the main source of resistance. This study enhances our understanding of p53 regulation and offers insights into overcoming drug resistance.

8.
Biomedicines ; 11(11)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-38001911

RESUMO

Target identification is a crucial process in drug development, aiming to identify key proteins, genes, and signal pathways involved in disease progression and their relevance in potential therapeutic interventions. While C-C chemokine receptor 8 (CCR8) has been investigated as a candidate anti-cancer target, comprehensive multi-omics analyzes across various indications are limited. In this study, we conducted an extensive bioinformatics analysis integrating genomics, proteomics, and transcriptomics data to establish CCR8 as a promising anti-cancer drug target. Our approach encompassed data collection from diverse knowledge resources, gene function analysis, differential gene expression profiling, immune cell infiltration assessment, and strategic prioritization of target indications. Our findings revealed strong correlations between CCR8 and specific cancers, notably Breast Invasive Carcinoma (BRCA), Colon Adenocarcinoma (COAD), Head and Neck Squamous Cell Carcinoma (HNSC), Rectum adenocarcinoma (READ), Stomach adenocarcinoma (STAD), and Thyroid carcinoma (THCA). This research advances our understanding of CCR8 as a potential target for anti-cancer drug development, bridging the gap between molecular insights and creating opportunities for personalized treatment of solid tumors.

9.
Curr Issues Mol Biol ; 45(9): 7058-7074, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37754230

RESUMO

Triple-negative breast cancer (TNBC) presents significant challenges due to its aggressive nature and limited treatment options. Focal adhesion kinase (FAK) has emerged as a critical factor promoting tumor growth and metastasis in TNBC. Despite encouraging results from preclinical and early clinical trials with various FAK inhibitors, none have yet achieved clinical success in TNBC treatment. This study investigates the therapeutic potential of a novel dual inhibitor of FAK and PYK2, named SJP1602, for TNBC. In vitro experiments demonstrate that SJP1602 effectively inhibits FAK and PYK2 activities, showing potent effects on both kinases. SJP1602 shows concentration-dependent inhibition of cell growth, migration, invasion, and 3D spheroid formation in TNBC cell lines, surpassing the efficacy of other FAK inhibitors. Pharmacokinetic studies in rats indicate favorable bioavailability and sustained plasma concentrations of SJP1602, supporting its potential as a therapeutic agent. Furthermore, in TNBC xenograft models, SJP1602 exhibits significant dose-dependent inhibition of tumor growth. These promising results emphasize the potential of SJP1602 as a potent dual inhibitor of FAK and PYK2, deserving further investigation in clinical trials for TNBC treatment.

10.
Anal Chim Acta ; 1275: 341581, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37524466

RESUMO

Mixing, homogenization, separation, and filtration are crucial processes in miniaturized analytical systems employed for in-vitro biological, environmental, and food analysis. However, in microfluidic systems achieving homogenization becomes more challenging due to the laminar flow conditions, which lack the turbulent flows typically used for mixing in traditional analytical systems. Here, we introduce an acoustofluidic platform that leverages an acoustic transducer to generate microvortex streaming, enabling effective homogenizing of food samples. To reduce reliance on external equipment, tubing, and pump, which is desirable for Point-of-Need testing, our pumpless platform employs a hydrophilic yarn capable of continuous wicking for sample perfusion. Following the homogenization process, the platform incorporates an array of micropillars for filtering out large particles from the samples. Additionally, the porous structure of the yarn provides a secondary screening mechanism. The resulting system is compact, and reliable, and was successfully applied to the detection of Escherichia coli (E. coli) in two different types of berries using quantitative polymerase chain reaction (qPCR). The platform demonstrated a detection limit of 5 CFU g-1, showcasing its effectiveness in rapid and sensitive pathogen detection.


Assuntos
Escherichia coli , Técnicas Analíticas Microfluídicas , Microfluídica/métodos , Acústica , Frutas , Transdutores
11.
Nanoscale ; 15(24): 10371-10382, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37292027

RESUMO

3D printing is established as an alternative microfabrication approach, and while printer resolution limits the direct 3D printing of pore features in the micron/submicron range, the use of nanoporous materials allows for the integration of porous membranes in 3D printed devices. Here, nanoporous membranes were formed by digital light projection (DLP) 3D printing using a polymerization-induced phase separation (PIPS) resin formulation. A functionally integrated device was fabricated using resin exchange following a simple, semi-automated manufacturing process. Printing of porous materials from a PIPS resin formulations based on polyethylene glycol diacrylate 250 as monomer was investigated by varying exposure time, photoinitiator concentration, and porogen content to yield materials with average pore size varying from 30-800 nm. Aiming for printing a size-mobility trap for electrophoretic extraction of deoxyribonucleic acid (DNA), conditions for printing materials with a mean pore size of 346 nm and 30 nm were selected for integration in a fluidic device using a resin exchange approach. Under optimized conditions (12.5 V for 20 min), cell concentrations as low as 103 cells per mL were detected following amplification of the extract by quantitative polymerase chain reaction (qPCR) at a Cq of 29. The efficacy of the size/mobility trap formed by the two membranes is demonstrated by detecting DNA concentrations equivalent to the input detected in the extract while removing 73% of the protein in the lysate. The DNA extraction yield was not statistically different from that obtained using a spin column, but manual handling and equipment needs were significantly reduced. This study demonstrates that nanoporous membranes with tailored properties can be integrated into fluidic devices using a simple manufacturing process based on resin exchange DLP. The process was used to manufacture a size-mobility trap and applied for the electroextraction and purification of DNA from E. coli lysate with reduced processing time, manual handling, and equipment needs compared with a commercially sourced DNA extraction kit. Combining manufacturability and portability with ease of use, the approach has demonstrated potential for manufacturing and using devices used in point-of-need testing for diagnostic nucleic acid amplification testing.


Assuntos
Escherichia coli , Nanoporos , Impressão Tridimensional , Técnicas de Amplificação de Ácido Nucleico , DNA
12.
ACS Appl Mater Interfaces ; 15(5): 7102-7111, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36700612

RESUMO

Real-time breath isoprene sensing provides noninvasive methods for monitoring human metabolism and early diagnosis of cardiovascular diseases. Nonetheless, the stable alkene structure and high humidity of the breath hinder sensitive and selective isoprene detection. In this work, we derived well-defined Co3O4@polyoxometalate yolk-shell structures using a metal-organic framework template. The inner space, including highly catalytic Co3O4 yolks surrounded by a semipermeable polyoxometalate shell, enables stable isoprene to be reformed to reactive intermediate species by increasing the gas residence time and the reaction with the inner catalyst. This sensor exhibited selective isoprene detection with an extremely high chemiresistive response (180.6) and low detection limit (0.58 ppb). The high sensing performance can be attributed to electronic sensitization and catalytic promotion effects. In addition, the reforming reaction of isoprene is further confirmed by the proton transfer reaction-quadrupole mass spectrometry analysis. The practical feasibility of this sensor in smart healthcare applications is exhibited by monitoring muscle activity during the workout.


Assuntos
Nanotecnologia , Óxidos , Humanos , Testes Respiratórios/métodos
13.
Health Phys ; 124(4): 316-325, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36696362

RESUMO

ABSTRACT: In a recent study, a comprehensive library composed of 212 phantoms with different body sizes was established by deforming the adult male and female mesh-type reference computational phantoms (MRCPs) of ICRP Publication 145 and the next-generation ICRP reference phantoms over the current voxel-type reference phantoms of ICRP Publication 110. In this study, as an application of the MRCP-based phantom library, we investigated dosimetric impacts due to the different body sizes for neutron external exposures. A comprehensive dataset of organ/tissue dose coefficients (DCs) for idealized external neutron beams with four phantoms for each sex representatively selected from the phantom library were produced by performing Monte Carlo simulations using the Geant4 code. The body size-dependent DCs produced in this study were systematically analyzed, observing that the variation of the body weights overall played a more important role in organ/tissue dose calculations than the variation of the body heights. We also observed that the reference body-size DCs based on the MRCPs indeed significantly under- or overestimated the DCs produced using the phantoms, especially for those much heavier (male: 175 cm and 140 kg; female: 165 cm and 140 kg) than the reference body sizes (male: 176 cm and 73 kg; female: 163 cm and 60 kg) by up to 1.6 or 3.3 times, respectively. We believe that the use of the body size-dependent DCs, together with the reference body-size DCs, should be beneficial for more reliable organ/tissue dose estimates of individuals considering their body sizes rather than the most common conventional approach, i.e., the sole use of the reference body size DCs.


Assuntos
Colangiopancreatografia por Ressonância Magnética , Radiometria , Humanos , Adulto , Masculino , Feminino , Tamanho Corporal , Peso Corporal , Imagens de Fantasmas , Nêutrons , Método de Monte Carlo , Doses de Radiação
14.
Mol Neurobiol ; 60(1): 145-159, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36242734

RESUMO

Although a couple of studies have reported that mutant superoxide dismutase 1 (SOD1), one of the causative genes of familial amyotrophic lateral, interacts physically with lysyl-tRNA synthetase (KARS1) by a gain of function, there is limited evidence regarding the detailed mechanism about how the interaction leads to neuronal cell death. Our results indicated that the aminoacyl-tRNA synthetase-interacting multi-functional protein 2 (AIMP2) mediated cell death upon the interplay between mutant SOD1 and KARS1 in ALS. Binding of mutant SOD1 with KARS1 led to the release of AIMP2 from its original binding partner KARS1, and the free form of AIMP2 induced TRAF2 degradation followed by TNF-α-induced cell death. We also suggest a therapeutic application that overexpression of DX2, the exon 2-deleted antagonistic splicing variant of AIMP2 (AIMP2-DX2), reduced neuronal cell death in the ALS mouse model. Expression of DX2 suppressed TRAF2 degradation and TNF-α-induced cell death by competing mode of action against full-length AIMP2. Motor neuron differentiated form iPSC showed a resistance in neuronal cell death after DX2 administration. Further, intrathecal administration of DX2-coding adeno-associated virus (AAV) improved locomotive activity and survival in a mutant SOD1-induced ALS mouse model. Taken together, these results indicated that DX2 could prolong life span and delay the ALS symptoms through compensation in neuronal inflammation.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas Nucleares , Animais , Camundongos , Morte Celular , Linhagem Celular Tumoral , Mutação , Proteínas Nucleares/metabolismo , Superóxido Dismutase-1/metabolismo , Fator 2 Associado a Receptor de TNF/genética , Fator 2 Associado a Receptor de TNF/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Isoformas de Proteínas
15.
Plants (Basel) ; 11(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36432876

RESUMO

In the angiosperm, pollen germinates and rapidly expands the pollen tube toward the ovule. This process is important for plant double fertilization and seed setting. It is well known that the tip-focused calcium gradient is essential for pollen germination and pollen tube growth. However, little is known about the Ca2+ channels that play a role in rice pollen germination and tube growth. Here, we divided the 16 cyclic nucleotide-gated channel (CNGC) genes from rice into five subgroups and found two subgroups (clades II and III) have pollen-preferential genes. Then, we performed a meta-expression analysis of all OsCNGC genes in anatomical samples and identified three pollen-preferred OsCNGCs (OsCNGC4, OsCNGC5, and OsCNGC8). The subcellular localization of these OsCNGC proteins is matched with their roles as ion channels on the plasma membrane. Unlike other OsCNGCs, these genes have a unique cis-acting element in the promoter. OsCNGC4 can act by forming a homomeric complex or a heteromeric complex with OsCNGC5 or OsCNGC8. In addition, it was suggested that they can form a multi-complex with Mildew Resistance Locus O (MLO) protein or other types of ion transporters, and that their expression can be modulated by Ruptured Pollen tube (RUPO) encoding receptor-like kinase. These results shed light on understanding the regulatory mechanisms of pollen germination and pollen tube growth through calcium channels in rice.

16.
J Neurosci ; 42(49): 9180-9192, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36280259

RESUMO

Nociceptive signals interact with various regions of the brain, including those involved in physical sensation, reward, cognition, and emotion. Emerging evidence points to a role of nociception in the modulation of the mesolimbic reward system. The mechanism by which nociception affects dopamine (DA) signaling and reward is unclear. The lateral hypothalamus (LH) and the lateral habenula (LHb) receive somatosensory inputs and are structurally connected with the mesolimbic DA system. Here, we show that the LH-LHb pathway is necessary for nociceptive modulation of this system using male Sprague Dawley rats. Our extracellular single-unit recordings and head-mounted microendoscopic calcium imaging revealed that nociceptive stimulation by tail pinch excited LHb and LH neurons, which was inhibited by chemical lesion of the LH. Tail pinch increased activity of GABA neurons in ventral tegmental area, decreased the extracellular DA level in the nucleus accumbens ventrolateral shell in intact rats, and reduced cocaine-increased DA concentration, which was blocked by disruption of the LH. Furthermore, tail pinch attenuated cocaine-induced locomotor activity, 22 and 50 kHz ultrasonic vocalizations, and reinstatement of cocaine-seeking behavior, which was inhibited by chemogenetic silencing of the LH-LHb pathway. Our findings suggest that nociceptive stimulation recruits the LH-LHb pathway to inhibit mesolimbic DA system and drug reinstatement.SIGNIFICANCE STATEMENT The LHb and the LH have been implicated in processing nociceptive signals and modulating DA release in the mesolimbic DA system. Here, we show that the LH-LHb pathway is critical for nociception-induced modulation of mesolimbic DA release and cocaine reinstatement. Nociceptive stimulation alleviates extracellular DA release in the mesolimbic DA system, cocaine-induced psychomotor activities, and reinstatement of cocaine-seeking behaviors through the LH-LHb pathway. These findings provide novel evidence for sensory modulation of the mesolimbic DA system and drug addiction.


Assuntos
Cocaína , Habenula , Ratos , Masculino , Animais , Cocaína/farmacologia , Ratos Sprague-Dawley , Habenula/metabolismo , Nociceptividade , Dopamina/metabolismo , Área Tegmentar Ventral/fisiologia , Região Hipotalâmica Lateral/metabolismo , Sensação , Recompensa
17.
Diseases ; 10(4)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36278572

RESUMO

Inflammatory bowel disease (IBD), Crohn's disease and ulcerative colitis are chronic inflammatory disorders of the intestines. The underlying inflammation activates the coagulation cascade leading to an increased risk of developing arterial and venous thromboembolic events such as deep vein thrombosis and pulmonary embolism. Patients with IBD are at a 2-3-fold increased risk of developing thromboembolism. This risk increases in patients with active IBD disease, flare-ups, surgery, steroid treatment, and hospitalization. These complications are associated with significant morbidity and mortality making them important in clinical practice. Clinicians should consider the increased risk of thromboembolic events in patients with IBD and manage them with appropriate prophylaxis based on the risk. In this review, we discuss the literature associated with the pathophysiology of thromboembolism in patients with IBD, summarize the studies describing the various thromboembolic events, and the management of thromboembolism in patients with IBD.

18.
Front Plant Sci ; 13: 997888, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212382

RESUMO

Potato (Solanum tuberosum L.) cultivation is threatened by various environmental stresses, especially disease. Genome editing technologies are effective tools for generating pathogen-resistant potatoes. Here, we established an efficient RNP-mediated CRISPR/Cas9 genome editing protocol in potato to develop Phytophthora infestans resistant mutants by targeting the susceptibility gene, Signal Responsive 4 (SR4), in protoplasts. Mutations in StSR4 were efficiently introduced into the regenerated potato plants, with a maximum efficiency of 34%. High co-expression of StEDS1 and StPAD4 in stsr4 mutants induced the accumulation of salicylic acid (SA), and enhanced the expression of the pathogen resistance marker StPR1. In addition, increased SA content in the stsr4 mutant enhanced its resistance to P. infestans more than that in wild type. However, the growth of stsr4_3-19 and stsr4_3-698 mutants with significantly high SA was strongly inhibited, and a dwarf phenotype was induced. Therefore, it is important to adequate SA accumulation in order to overcome StSR4 editing-triggered growth inhibition and take full advantages of the improved pathogen resistance of stsr4 mutants. This RNP-mediated CRISPR/Cas9-based potato genome editing protocol will accelerate the development of pathogen-resistant Solanaceae crops via molecular breeding.

19.
Mycobiology ; 50(1): 46-54, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35291593

RESUMO

Although Apiospora Sacc. has previously been considered a sexual morph of Arthrinium species on the basis of phylogenetic, morphological, and ecological diagnoses, a recent study delimited these as different species. Recently, 14 species, including eight new species, of marine Arthrinium have been reported from Korea. Six known species have previously been renamed as species in the genus Apiospora (A. arundinis, A. marii, A. piptatheri, A. rasikravindrae, A. sacchari, and A. saccharicola). However, the eight new species of marine Arthrinium (Ar. agari, Ar. arctoscopi, Ar. fermenti, Ar. koreanum, Ar. marinum, Ar. pusillispermum, Ar. sargassi, and Ar. taeanense) are yet to be studied, and thus the taxonomic status of these species remains to be clarified. In this study, we conducted phylogenetic analyses using the internal transcribed spacer, 28S large subunit ribosomal RNA gene, translation elongation factor 1-alpha, and beta-tubulin regions to confirm the phylogenetic position of these eight species. Based on these analyses, we re-identified the eight Arthrinium species as new combinations in Apiospora. Additionally, among the six known Apiospora species, two (A. piptatheri and A. rasikravindrae) have not previously been recorded in Korea. On the basis of morphological and molecular analyses, we report these as new species in Korea. Herein, we present scanning electron micrographs detailing the morphologies of these species, along with phylogenetic trees and detailed descriptions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...